Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Comput Biol Med ; 142: 105166, 2022 03.
Article in English | MEDLINE | ID: covidwho-1588031

ABSTRACT

Coronavirus disease-2019 (COVID-19) has made the world more cautious about widespread viruses, and a tragic pandemic that was caused by a novel coronavirus has harmed human beings in recent years. The new coronavirus pneumonia outbreak is spreading rapidly worldwide. We collect arterial blood samples from 51 patients with a COVID-19 diagnosis. Blood gas analysis is performed using a Siemens RAPID Point 500 blood gas analyzer. To accurately determine the factors that play a decisive role in the early recognition and discrimination of COVID-19 severity, a prediction framework that is based on an improved binary Harris hawk optimization (HHO) algorithm in combination with a kernel extreme learning machine is proposed in this paper. This method uses specular reflection learning to improve the original HHO algorithm and is referred to as HHOSRL. The experimental results show that the selected indicators, such as age, partial pressure of oxygen, oxygen saturation, sodium ion concentration, and lactic acid, are essential for the early accurate assessment of COVID-19 severity by the proposed feature selection method. The simulation results show that the established methodlogy can achieve promising performance. We believe that our proposed model provides an effective strategy for accurate early assessment of COVID-19 and distinguishing disease severity. The codes of HHO will be updated in https://aliasgharheidari.com/HHO.html.


Subject(s)
COVID-19 , Falconiformes , Animals , Blood Gas Analysis , COVID-19 Testing , Humans , Machine Learning , SARS-CoV-2
2.
IEEE Access ; 9: 45486-45503, 2021.
Article in English | MEDLINE | ID: covidwho-1522547

ABSTRACT

This paper has proposed an effective intelligent prediction model that can well discriminate and specify the severity of Coronavirus Disease 2019 (COVID-19) infection in clinical diagnosis and provide a criterion for clinicians to weigh scientific and rational medical decision-making. With indicators as the age and gender of the patients and 26 blood routine indexes, a severity prediction framework for COVID-19 is proposed based on machine learning techniques. The framework consists mainly of a random forest and a support vector machine (SVM) model optimized by a slime mould algorithm (SMA). When the random forest was used to identify the key factors, SMA was employed to train an optimal SVM model. Based on the COVID-19 data, comparative experiments were conducted between RF-SMA-SVM and several well-known machine learning algorithms performed. The results indicate that the proposed RF-SMA-SVM not only achieves better classification performance and higher stability on four metrics, but also screens out the main factors that distinguish severe COVID-19 patients from non-severe ones. Therefore, there is a conclusion that the RF-SMA-SVM model can provide an effective auxiliary diagnosis scheme for the clinical diagnosis of COVID-19 infection.

3.
Journal of King Saud University - Computer and Information Sciences ; 2021.
Article in English | ScienceDirect | ID: covidwho-1446874

ABSTRACT

Coronavirus 2019 (COVID-19) is an extreme acute respiratory syndrome. Early diagnosis and accurate assessment of COVID-19 are not available, resulting in ineffective therapeutic therapy. This study designs an effective intelligence framework to early recognition and discrimination of COVID-19 severity from the perspective of coagulation indexes. The framework is proposed by integrating an enhanced new stochastic optimizer, a brain storm optimizing algorithm (EBSO), with an evolutionary machine learning algorithm called EBSO-SVM. Fast convergence and low risk of the local stagnant can be guaranteed for EBSO with added by Harris hawks optimization (HHO), and its property is verified on 23 benchmarks. Then, the EBSO is utilized to perform parameter optimization and feature selection simultaneously for support vector machine (SVM), and the presented EBSO-SVM early recognition and discrimination of COVID-19 severity in terms of coagulation indexes using COVID-19 clinical data. The classification performance of the EBSO-SVM is very promising, reaching 91.9195% accuracy, 90.529% Matthews correlation coefficient, 90.9912% Sensitivity and 88.5705% Specificity on COVID-19. Compared with other existing state-of-the-art methods, the EBSO-SVM in this paper still shows obvious advantages in multiple metrics. The statistical results demonstrate that the proposed EBSO-SVM shows predictive properties for all metrics and higher stability, which can be treated as a computer-aided technique for analysis of COVID-19 severity from the perspective of coagulation.

4.
Comput Biol Med ; 136: 104698, 2021 09.
Article in English | MEDLINE | ID: covidwho-1330718

ABSTRACT

Coronavirus Disease 2019 (COVID-19) was distributed globally at the end of December 2019 due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Early diagnosis and successful COVID-19 assessment are missing, clinical care is ineffective, and deaths are high. In this study, we investigate whether the level of biochemical indicators helps to discriminate and classify the severity of the COVID-19 using the machine learning method. This research creates an efficient intelligence method for the diagnosis of COVID-19 from the perspective of biochemical indexes. The framework is proposed by integrating an enhanced new stochastic called the colony predation algorithm (CPA) with a kernel extreme learning machine (KELM), abbreviated as ECPA-KELM. The core feature of the approach is the ECPA algorithm which incorporates the two main operators that have been abstained from the grey wolf optimizer and moth-flame optimizer to improve and restore the CPA research functions and are simultaneously used to optimize the parameters and to select features for KELM. The ECPA output is checked thoroughly using IEEE CEC2017 benchmark to verify the capacity of the proposed methodology. Finally, in the diagnosis of COVID-19 using biochemical indexes, the designed ECPA-KELM model and other competing KELM models based on other optimization are used. Checking statistical results will display improved predictive properties for all metrics and higher stability. ECPA-KELM can also be used to discriminate and classify the severity of the COVID-19 as a possible computer-aided method and provide effective early warning for the treatment and diagnosis of COVID-19.


Subject(s)
COVID-19 , Predatory Behavior , Algorithms , Animals , Humans , Machine Learning , SARS-CoV-2
5.
IEEE Access ; 9: 17787-17802, 2021.
Article in English | MEDLINE | ID: covidwho-1105107

ABSTRACT

This study is devoted to proposing a useful intelligent prediction model to distinguish the severity of COVID-19, to provide a more fair and reasonable reference for assisting clinical diagnostic decision-making. Based on patients' necessary information, pre-existing diseases, symptoms, immune indexes, and complications, this article proposes a prediction model using the Harris hawks optimization (HHO) to optimize the Fuzzy K-nearest neighbor (FKNN), which is called HHO-FKNN. This model is utilized to distinguish the severity of COVID-19. In HHO-FKNN, the purpose of introducing HHO is to optimize the FKNN's optimal parameters and feature subsets simultaneously. Also, based on actual COVID-19 data, we conducted a comparative experiment between HHO-FKNN and several well-known machine learning algorithms, which result shows that not only the proposed HHO-FKNN can obtain better classification performance and higher stability on the four indexes but also screen out the key features that distinguish severe COVID-19 from mild COVID-19. Therefore, we can conclude that the proposed HHO-FKNN model is expected to become a useful tool for COVID-19 prediction.

SELECTION OF CITATIONS
SEARCH DETAIL